Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0296850, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38330059

RESUMO

Staphylococcus schleiferi and Staphylococcus coagulans are opportunistic pathogens of animals and humans. They were previously classified as Staphylococcus schleiferi subs. schleiferi and Staphylococcus schleiferi subs. coagulans, respectively, and recently reclassified as separate species. S. coagulans, is frequently associated with dogs, whereas S. schleiferi is more commonly isolated from humans. Coagulase activity status is a defining characteristic of the otherwise closely related species. However, the use of coagulase tests originally developed to distinguish S. aureus from non-coagulase-producing staphylococci, for this purpose is questionable and the basis for their host preference has not been elucidated. In the current study, a putative coa gene was identified and correlated with coagulase activity measured using a chromogenic assay with human and bovine prothrombin (closely related to canine prothrombin). The results of the tests performed with human prothrombin showed greater reactivity of S. coagulans isolates from humans than isolates obtained from dogs with the same substrate. Our data suggest that unlike S. coagulans isolates from humans, isolates from dogs have more coagulase activity with bovine prothrombin (similar to canine prothrombin) than human prothrombin. Differences in nuc and 16s rRNA genes suggest a divergence in S. coagulans and S. schleiferi. Phenotypic and genotypic variation based on the number of IgG binding domains, and the numbers of tandem repeats in C-terminal fibronectin binding motifs was also found in protein A, and fibronectin-binding protein B respectively. This study identified a coa gene and associated phenotypic activity that differentiates S. coagulans and S. schleiferi and identified key phylogenetic and phenotypic differences between the species.


Assuntos
Doenças do Cão , Infecções Estafilocócicas , Animais , Humanos , Cães , Bovinos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Coagulase/genética , Coagulase/metabolismo , RNA Ribossômico 16S/genética , Fibronectinas/genética , Filogenia , Protrombina , Staphylococcus/metabolismo , Infecções Estafilocócicas/veterinária
2.
BMC Microbiol ; 23(1): 79, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949384

RESUMO

BACKGROUND: Clostridium perfringens (C. perfringens) is an important pathogen in livestock animals and humans causing a wide array of systemic and enteric diseases. The current study was performed to investigate the inhibitory activity of myricetin (MYR), polyvinyl alcohol (PVA), and zinc oxide (ZnO) nanocomposite against growth and α-hemolysin of C. perfringens isolated from beef meat and chicken sources. RESULTS: The overall occurrence of C. perfringens was 29.8%. The prevalence of C. perfringens was higher in chicken (38.3%) than in beef meat products (10%). The antimicrobial susceptibility testing revealed that C. perfringens isolates exhibited high resistance levels for metronidazole (93%), bacitracin (89%), penicillin G (84%), and lincomycin (76%). Of note, 1% of C. perfringens isolates were pandrug-resistant (PDR), 4% were extensive drug-resistant (XDR), while 91% were multidrug-resistant. The results of broth microdilution technique revealed that all tested C. perfringens isolates were susceptible to MYR-loaded ZnO/PVA with minimum inhibitory concentrations (MICs) ranged from 0.125 to 2 µg/mL. Moreover, the MYR either alone or combined with the nanocomposite had no cytotoxic activities on chicken red blood cells (cRBCs). Transcriptional modifications of MYR, ZnO, ZnO/PVA, and ZnO/PVA/MYR nanocomposite were determined, and the results showed significant down-regulation of α-hemolysin fold change to 0.5, 0.7, 0.6, and 0.28, respectively compared to the untreated bacteria. CONCLUSION: This is an in vitro study reporting the antimicrobial potential of MYR-coated ZnO nanocomposite as an effective therapeutic candidate against C. perfringens. An in vivo approach is the next step to provide evidence for applying these alternatives in the treatment and prevention of C. perfringens-associated diseases.


Assuntos
Anti-Infecciosos , Infecções por Clostridium , Óxido de Zinco , Humanos , Animais , Bovinos , Clostridium perfringens/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Óxido de Zinco/farmacologia , Infecções por Clostridium/microbiologia , Proteínas Hemolisinas , Anti-Infecciosos/farmacologia , Galinhas
3.
Microbiol Spectr ; 10(4): e0025022, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35852338

RESUMO

Surface-growing antibiotic-resistant pathogenic bacteria such as Escherichia coli and Staphylococcus aureus are emerging as a global health challenge due to dilemmas in clinical treatment. Furthermore, their pathogenesis, including increasingly serious antimicrobial resistance and biofilm formation, makes them challenging to treat by conventional therapy. Therefore, the development of novel antivirulence strategies will undoubtedly provide a path forward in combatting these resistant bacterial infections. In this regard, we developed novel biosurfactant-coated nanoparticles to combine the antiadhesive/antibiofilm properties of rhamnolipid (RHL)-coated Fe3O4 nanoparticles (NPs) with each of the p-coumaric acid (p-CoA) and gallic acid (GA) antimicrobial drugs by using the most available polymer common coatings (PVA) to expand the range of effective antibacterial drugs, as well as a mechanism for their synergistic effect via a simple method of preparation. Mechanistically, the average size of bare Fe3O4 NPs was ~15 nm, while RHL-coated Fe3O4@PVA@p-CoA/GA was about ~254 nm, with a drop in zeta potential from -18.7 mV to -34.3 mV, which helped increase stability. Our data show that RHL-Fe3O4@PVA@p-CoA/GA biosurfactant NPs can remarkably interfere with bacterial growth and significantly inhibited biofilm formation to more than 50% via downregulating IcaABCD and CsgBAC operons, which are responsible for slime layer formation and curli fimbriae production in S. aureus and E. coli, respectively. The novelty regarding the activity of RHL-Fe3O4@PVA@p-CoA/GA biosurfactant NPs reveals their potential effect as an alternative multitarget antivirulence candidate to minimize infection severity by inhibiting biofilm development. Therefore, they could be used in antibacterial coatings and wound dressings in the future. IMPORTANCE Antimicrobial resistance poses a great threat and challenge to humanity. Therefore, the search for alternative ways to target and eliminate microbes from plant, animal, and marine microorganisms is one of the world's concerns today. Furthermore, the extraordinary capacity of S. aureus and E. coli to resist standard antibacterial drugs is the dilemma of all currently used remedies. Methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) have become widespread, leading to no remedies being able to treat these threatening pathogens. The most widely recognized serotypes that cause severe foodborne illness are E. coli O157:H7, O26:H11, and O78:H10, and they display increasing antimicrobial resistance rates. Therefore, there is an urgent need for an effective therapy that has dual action to inhibit biofilm formation and decrease bacterial growth. In this study, the synthesized RHL-Fe3O4@PVA@p-CoA/GA biosurfactant NPs have interesting properties, making them excellent candidates for targeted drug delivery by inhibiting bacterial growth and downregulating biofilm-associated IcaABCD and CsgBAC gene loci.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Escherichia coli , Glicolipídeos , Nanopartículas Magnéticas de Óxido de Ferro , Resistência a Meticilina , Testes de Sensibilidade Microbiana , Sorogrupo , Staphylococcus aureus
4.
Front Cell Infect Microbiol ; 12: 782045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402300

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen associated with severe morbidity and mortality and poses a significant threat to public health worldwide. The genetic diversity based on sequence types of MRSA strains was illustrated in previous studies; meanwhile, the diversity along with the predominant sequence type, especially in Egypt, remains unknown. The purpose of the current study was to determine the diversity of the predominant MRSA clone ST239-MRSA (n = 50) isolated from different hosts and clinical samples and to illustrate the correlation between the resistance patterns, toxin genes, and the genetic background in Port-said and El-Sharkia Governorates, Egypt. The ST239-MRSA clone was analyzed by phenotypic antibiotyping and various genotypic assays comprising SCCmec, agr, spa, coa, and coa-RFLP in addition to toxin gene profiles. Most of the analyzed strains (40/50, 80%) were multidrug resistant (MDR), belonged to SCCmec-III, agr-I, and coa genotype I, and harbored sea and pvl genes. A negative correlation between the toxin gene profiles and antimicrobial resistance was recorded. Meanwhile, the correlation between the toxin gene profiles and the genetic background was not observed in this study. Although ST239-MRSA strains belonged to a single sequence type, they exhibited a high degree of phenotypic and genotypic diversity, indicating weak clonality and adaptability. With such diversity, it is assumed that these strains may have undergone different evolutionary processes during transmission events among and/or within a single host or tissue niche.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Egito/epidemiologia , Genótipo , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia
5.
Animals (Basel) ; 10(11)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171625

RESUMO

Campylobacter species are common commensals in the gastrointestinal tract of livestock animals; thus, animal-to-human transmission occurs frequently. We investigated for the first time, class 1 integrons and associated gene cassettes among pan drug-resistant (PDR), extensively drug-resistant (XDR), and multidrug-resistant (MDR) Campylobacter species isolated from livestock animals and humans in Egypt. Campylobacter species were detected in 58.11% of the analyzed chicken samples represented as 67.53% Campylobacter jejuni(C. jejuni) and 32.47% Campylobacter coli (C. coli). C. jejuni isolates were reported in 51.42%, 74.28%, and 66.67% of examined minced meat, raw milk, and human stool samples, respectively. Variable antimicrobial resistance phenotypes; PDR (2.55%), XDR (68.94%), and MDR (28.5%) campylobacters were reported. Molecular analysis revealed that 97.36% of examined campylobacters were integrase gene-positive; all harbored the class 1 integrons, except one possessed an empty integron structure. DNA sequence analysis revealed the predominance of aadA (81.08%) and dfrA (67.56%) alleles accounting for resistance to aminoglycosides and trimethoprim, respectively. This is the first report of aacC5-aadA7Δ4 gene cassette array and a putative phage tail tape measure protein on class 1 integrons of Campylobacter isolates. Evidence from this study showed the possibility of Campylobacter-bacteriophage interactions and treatment failure in animals and humans due to horizontal gene transfer mediated by class 1 integrons.

6.
Animals (Basel) ; 10(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977486

RESUMO

The aim of the present study was to evaluate mannan oligosaccharides (MOS) or glycerol (GLY) as a carbon source on biofloc systems of Nile tilapia (O. niloticus) juveniles. Fish (n = 750) were reared in open flow (Controls) or biofloc systems (B-GLY and B-MOS) fed with a plant or fish protein source over a period of twelve weeks. Total ammonia nitrogen and nitrate decreased in the biofloc groups, while biofloc volume increased in B-MOS. Compared to the controls, B-MOS and B-GLY exhibited higher weight gain and improved feed conversion, irrespectively of the diet. Serum level of C-reactive protein was reduced, while IgM and lysozyme activity was higher in the B-MOS fish, compared to other groups. Intestinal Bacillus spp. count was increased, whereas Vibrio, Aeromonas and Pseudomonas spp. counts decreased in B-MOS reared groups, compared to the other groups. The proinflammatory cytokine (IL-8 and IFN-γ) transcript expression was upregulated in B-MOS more than B-GLY reared groups. Compared to the controls, the virulence of Aeromonas hydrophila was decreased in the B-MOS and B-GLY groups. The results indicate several benefits of using MOS as a carbon source in a biofloc Nile tilapia system; a cost benefit analysis is required to assess the economic viability of this.

7.
Front Vet Sci ; 7: 612063, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33415133

RESUMO

Phytogenic feed additives have been gaining considerable interest due to their ability to improve gut health and thereby performance of broiler chickens. The impact of Glycyrrhiza glabra (licorice) extract (GE) on expression of genes coding for tight junction proteins and gut protection and Campylobacter jejuni colonization in broilers has not been discussed until now. Thus, the current study assessed the effective dose of GE for maximum growth in broiler chickens, clear-cut molecular mechanisms related to integrity and health of intestine, and controlling C. jejuni colonization. Over a 35-day feeding period, a total of 500 Ross broiler chicks were allocated to five groups; the first group was fed a control diet without GE and the second group to the fifth group were fed a control diet with GE (0.25, 0.5, 1, and 2 g/kg of diet); each group comprised 100 chicks with 10 replicates (10 birds/replicate). Birds fed GE had an improved body weight gain and feed conversion ratio. Furthermore, the highest body weight gain was observed in the group that received 1 g/kg of GE (P < 0.05). The expression of genes coding for tight junction proteins [occludin and junctional adhesion molecules (JAM)] was upregulated in all groups supplemented with GE. Moreover, birds fed 1 g/kg of GE exhibited the maximum gene expression of occludin and JAM [0.2 and 0.3 fold change, respectively (P < 0.05)]. In relation to enterocyte protective genes [glucagon-like peptide (GLP-2) and fatty acid-binding protein (FABP-6)], use of GE significantly upregulated expression of GLP-2 gene with 0.8 fold change in 2 g/kg of the GE supplemented group (P < 0.05) while the expression of FABP-6 gene was not affected by GE supplementation (P > 0.05). After challenge with C. jejuni, the expression of mucin (MUC-2) gene was upregulated and the inflammatory markers such as Toll-like receptors (TLR-4) and interleukin (IL-1ß) were downregulated with increasing level of supplemented GE (P < 0.05). The mean log10 count of C. jejuni in cecal samples after 7 days post-infection by culture and real-time qPCR was decreased in groups fed GE in a dose-dependent manner (P < 0.05). In addition, the highest reduction of C. jejuni count in cecal samples by culture and real-time qPCR was observed in the group fed 2 g/kg of GE (2.58 and 2.28 log10 CFU/g, respectively). Results from this study suggested that G. glabra extract (1 g/kg) improved growth performance of broiler chickens, as well as influenced the maintenance of intestinal integrity and reduced C. jejuni shedding from infected birds.

8.
PLoS One ; 14(7): e0219817, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31335868

RESUMO

The success of staphylococci as pathogens has been attributed, in part, to their ability to evade their hosts' immune systems. Although the proteins involved in evasion have been extensively studied in staphylococci affecting humans little characterization has been done with Staphylococcus pseudintermedius, an important cause of pyoderma in dogs. Staphylococcus aureus binder of immunoglobulin (Sbi) interferes with innate immune recognition by interacting with multiple host proteins. In this study, a S. pseudintermedius gene that shares 38% similarity to S. aureus Sbi was cloned from S. pseudintermedius strains representative of major clonal lineages bearing two paralogs of the protein. Binding of immunoglobulins and Fab and Fc fragments as well as interaction with complement was measured. S. pseudintermedius Sbi protein bound IgG from multiple species and canine complement C3, neutralized complement activity and bound to canine IgM and B cells. Evidence from this work suggests Sbi may play an important role in S. pseudintermedius immune evasion.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas do Sistema Complemento/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina M/imunologia , Staphylococcus/imunologia , Animais , Proteínas de Bactérias/imunologia , Proteínas de Transporte/imunologia , Cães , Homologia de Sequência de Aminoácidos , Staphylococcus/genética
9.
Infect Immun ; 86(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29891539

RESUMO

Coagulase activation of prothrombin by staphylococcus induces the formation of fibrin deposition that facilitates the establishment of infection by Staphylococcus species. Coagulase activity is a key characteristic of Staphylococcus pseudintermedius; however, no coagulase gene or associated protein has been studied to characterize this activity. We report a recombinant protein sharing 40% similarity to Staphylococcus aureus coagulase produced from a putative S. pseudintermedius coagulase gene. Prothrombin activation by the protein was measured with a chromogenic assay using thrombin tripeptide substrate. Stronger interaction with bovine prothrombin than with human prothrombin was observed. The S. pseudintermedius coagulase protein also bound complement C3 and immunoglobulin. Recombinant coagulase facilitated the escape of S. pseudintermedius from phagocytosis, presumably by forming a bridge between opsonizing antibody, complement, and fibrinogen. Evidence from this work suggests that S. pseudintermedius coagulase has multifunctional properties that contribute to immune evasion that likely plays an important role in virulence.


Assuntos
Coagulase/genética , Coagulase/metabolismo , Evasão da Resposta Imune , Protrombina/metabolismo , Staphylococcus/enzimologia , Staphylococcus/genética , Animais , Compostos Cromogênicos/metabolismo , Clonagem Molecular , Colorimetria , Complemento C3/metabolismo , Cães , Imunoglobulinas/metabolismo , Cinética , Fagocitose , Ligação Proteica , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência , Trombina/análise , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...